Détail de l'auteur
Auteur Stan HURN |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Faire une suggestion Affiner la recherche
Econometric modelling with time series / Vance L MARTIN / Cambridge University Press (2013)
Titre : Econometric modelling with time series : specification, estimation and testing Type de document : Livre Auteurs : Vance L MARTIN (1955-....), Auteur ; David HARRIS, Auteur ; Stan HURN, Auteur Editeur : Cambridge University Press Année de publication : 2013 Collection : Themes in modern econometrics Importance : 887 p. Présentation : ill. Format : 25 cm ISBN/ISSN/EAN : 978-0-521-19660-4 Langues : Anglais (eng) Mots-clés : Management
ECONOMETRIE ; STATISTIQUE MATHEMATIQUEIndex. décimale : 331.23 ECONOMETRIE Résumé : "Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn" Permalink : https://cataloguelibrary.neoma-bs.fr/index.php?lvl=notice_display&id=553753 Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 056522 330.01 MAR Livre Library Campus de Reims Salle de lecture Exclu du prêt J7027 331.23 MAR Livre Library Campus de Rouen Salle de lecture Exclu du prêt
LIBRARY - Campus Rouen
NEOMA Business School
pmb
-
59 Rue Taittinger, 51100 Reims
-
00 33 (0)3 26 77 46 15
Library Campus Reims
-
1 Rue du Maréchal Juin, BP 215
76825 Mont Saint Aignan cedex -
00 33 (0)2 32 82 58 26