Mots-clés
Management > STATISTIQUE > STATISTIQUE MATHEMATIQUE > ESTIMATION STATISTIQUE > PREVISION
PREVISIONVoir aussi |
Documents disponibles dans cette catégorie (27)
Ajouter le résultat dans votre panier Faire une suggestion Affiner la recherche
Etendre la recherche sur niveau(x) vers le haut et vers le bas
2023 FRM Exam Part I - Quantitative Analysis / GARP (GLOBAL ASSOCIATION OF RISK PROFESSIONALS) (2023)
Titre : 2023 FRM Exam Part I - Quantitative Analysis Type de document : Livre Editeur : GARP (GLOBAL ASSOCIATION OF RISK PROFESSIONALS) Année de publication : 2023 Importance : 245 p. Accompagnement : E-books disponibles dans la salle de lecture de la Library - Campus de Rouen ISBN/ISSN/EAN : 978-0-13-805237-9 Langues : Anglais (eng) Mots-clés : Management
ANALYSE QUANTITATIVE ; MANUEL ; PREVISION ; PROBABILITES ; RISQUE FINANCIER ; STATISTIQUEIndex. décimale : 131.56 RISQUE FINANCIER Résumé : This volume covers quantitative concepts of risk management, and includes a range of broad knowledge point such as:
- Discrete and continuous probability distributions; - Statistical inference and hypothesis testing; - Linear regression with single and multiple regressors; - Time series analysis and forecasting
As the world's leading designation for financial risk management, the FRM assesses your ability to measure and manage risk by testing against a global professional standard. Newly written specifically for the FRM, this series presents the material for the 2021 FRM curriculum, and provides a framework for your studies as you prepare to take the Exam.Permalink : https://cataloguelibrary.neoma-bs.fr/index.php?lvl=notice_display&id=569084 Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité J7195 131.56 FRM Livre Library Campus de Rouen Salle de lecture Disponible J7196 131.56 FRM Livre Library Campus de Rouen Salle de lecture Disponible J7206 131.56 FRM Livre Library Campus de Rouen Salle de lecture Disponible 2022 FRM Exam Part I - Quantitative Analysis / GARP (GLOBAL ASSOCIATION OF RISK PROFESSIONALS) (2022)
Titre : 2022 FRM Exam Part I - Quantitative Analysis Type de document : Livre Editeur : GARP (GLOBAL ASSOCIATION OF RISK PROFESSIONALS) Année de publication : 2022 Importance : 245 p. Accompagnement : E-books disponibles dans la salle de lecture de la Library - Campus de Rouen ISBN/ISSN/EAN : 978-0-13-744097-9 Langues : Anglais (eng) Mots-clés : Management
ANALYSE QUANTITATIVE ; MANUEL ; PREVISION ; PROBABILITES ; RISQUE FINANCIER ; STATISTIQUEIndex. décimale : 131.56 RISQUE FINANCIER Résumé : This volume covers quantitative concepts of risk management, and includes a range of broad knowledge point such as:
- Discrete and continuous probability distributions; - Statistical inference and hypothesis testing; - Linear regression with single and multiple regressors; - Time series analysis and forecasting
As the world's leading designation for financial risk management, the FRM assesses your ability to measure and manage risk by testing against a global professional standard. Newly written specifically for the FRM, this series presents the material for the 2021 FRM curriculum, and provides a framework for your studies as you prepare to take the Exam.Permalink : https://cataloguelibrary.neoma-bs.fr/index.php?lvl=notice_display&id=539333 Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité J6970 131.56 FRM Livre Library Campus de Rouen Salle de lecture Disponible J6969 131.56 FRM Livre Library Campus de Rouen Salle de lecture Disponible 2021 FRM Exam Part I - Quantitative Analysis / GARP (GLOBAL ASSOCIATION OF RISK PROFESSIONALS) (2021)
Titre : 2021 FRM Exam Part I - Quantitative Analysis Type de document : Livre Editeur : GARP (GLOBAL ASSOCIATION OF RISK PROFESSIONALS) Année de publication : 2021 Importance : 245 p. Accompagnement : E-books disponibles dans la salle de lecture de la Library - Campus de Rouen ISBN/ISSN/EAN : 978-0-13-727327-0 Langues : Anglais (eng) Mots-clés : Management
ANALYSE QUANTITATIVE ; MANUEL ; PREVISION ; PROBABILITES ; RISQUE FINANCIER ; STATISTIQUEIndex. décimale : 131.56 RISQUE FINANCIER Résumé : This volume covers quantitative concepts of risk management, and includes a range of broad knowledge point such as:
- Discrete and continuous probability distributions; - Statistical inference and hypothesis testing; - Linear regression with single and multiple regressors; - Time series analysis and forecasting
As the world's leading designation for financial risk management, the FRM assesses your ability to measure and manage risk by testing against a global professional standard. Newly written specifically for the FRM, this series presents the material for the 2021 FRM curriculum, and provides a framework for your studies as you prepare to take the Exam.Permalink : https://cataloguelibrary.neoma-bs.fr/index.php?lvl=notice_display&id=529166 Exemplaires(4)
Code-barres Cote Support Localisation Section Disponibilité J6949 131.56 FRM Livre Library Campus de Rouen Salle de lecture Exclu du prêt J6950 131.56 FRM Livre Library Campus de Rouen Salle de lecture Exclu du prêt J6672 131.56 FRM Livre Library Campus de Rouen Salle de lecture Exclu du prêt J6673 131.56 FRM Livre Library Campus de Rouen Salle de lecture Exclu du prêt Bitcoin Price Forecasting using Artificial Neural Networks (ANNs) with Long-Short Term Memory (LSTM) / Marcel Domenico BRETZIGHEIMER / 2021
Titre : Bitcoin Price Forecasting using Artificial Neural Networks (ANNs) with Long-Short Term Memory (LSTM) Type de document : Mémoire Auteurs : Marcel Domenico BRETZIGHEIMER, Auteur Année de publication : 2021 Importance : 54 p. Note générale : Pour accéder aux fichiers PDF, merci de vous identifier sur le catalogue avec votre compte Office 365 via le bouton CONNEXION en haut de page. Langues : Anglais (eng) Mots-clés : Management
MONNAIE ELECTRONIQUE ; PREVISION ; CAPITALISATION BOURSIERERésumé : More and more corporations as well as individual and institutional investors starting to invest in Bitcoin (and other cryptocurrencies), resulting in price increases and more legitimacy for this new asset class. Investment decisions always beg the question about future price development and the knowledge about it supports decisions regarding portfolio optimization, risk evaluation and trading. Since financial time series are usually highly nonlinear and noisy, it calls for alternatives to classical time series analy- sis. The emergence of advanced machine learning systems attracted the attention of professionals and academics, utilizing them successfully to model and predict the prices of stocks and cryptocurrencies. Most successful are deep learning (DL) artificial neural networks (ANNs) with long-short term memory (LSTM). Therefore, with this dissertation, LSTM ANNs were exploited to predict Bitcoin’s daily price, using a dataset from 01/01/2015 to 31/05/2021. To give the reader a basis and better understanding firstly the backgrounds of cryptocurrencies and ANNs were introduced. Afterwards, eight different training algorithms including, SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, Nadam, and FTRL, using five different epoch sizes including, 25, 50, 100, 250 and 500 were used to build up LSTM ANNs. By evaluating the forecasting performance using the root mean square error (RMSE), it was confirmed that the choice of the training algorithm and the epoch size significantly influences the forecasting performance of Bitcoin’s daily price. Thereby, the FTRL was identified as completely unsuitable, and the Adamax using 25 epochs as the optimal algorithm, even in times of high volatility. To the best of the author’s knowledge, this was the first time that this was investigated on an empirical basis. Programme : MSc Corporate Finance Permalink : https://cataloguelibrary.neoma-bs.fr/index.php?lvl=notice_display&id=538521 Learning by filtering : a stock price forecasting competition using state-space models / Camilo VELASCO FRANCO / 2021
Titre : Learning by filtering : a stock price forecasting competition using state-space models Type de document : Mémoire Auteurs : Camilo VELASCO FRANCO, Auteur Année de publication : 2021 Importance : 57 p. Note générale : Pour accéder aux fichiers PDF, merci de vous identifier sur le catalogue avec votre compte Office 365 via le bouton CONNEXION en haut de page. Langues : Anglais (eng) Mots-clés : Management
ACTION ; COMPETITIVITE ; PREVISION ; PRIXRésumé : Forecasting competitions draw the attention of both researchers and professionals. In fact, they have proven their pertinence by challenging different methods with multiple time series from a wide range of sectors and different frequencies, unveiling the capability of such methods to anticipate the movements of the studied time series. There have been controversies on whether these applications provide beneficial results or not, but what is true is that these competitions have played an essential role in the developments made in the predictive data science field. In this research, a forecasting competition is proposed exclusively using around 1 697 time series from stocks of 11 world indices since 2007. The competitors are known benchmarks such as the naïve method, but also proprietary methods developed by Prof. Giacomo Sbrana and other widely known ones, most of which were presented using a state space representation in the MSOE world applying the Kalman Filters. The results of this competition show, in a general and detailed way, the performance of the different methods and specific information on which method is best fitted for predicting specific asset prices. Moreover, the competition provides the accuracy of predicting single prices and the accuracy of predicting the direction. This information could be handy in the investment process. In conclusion, there is proof that competitions provide exciting and valuable results suggesting that assets behave differently. Thus their price movements can be anticipated by applying methods that are not necessarily the conventional ones Programme : MS Analyse Financière Internationale (ft)- Reims Permalink : https://cataloguelibrary.neoma-bs.fr/index.php?lvl=notice_display&id=539126 FRM Exam Part I / GARP (GLOBAL ASSOCIATION OF RISK PROFESSIONALS) (2020)PermalinkDictionnaire de comptabilité / Bernard COLASSE / Paris : EDITIONS LA DECOUVERTE (2015)PermalinkInside the crystal ball / Maury HARRIS / John Wiley & Sons (2015)PermalinkLe Monde dans 100 ans / Ignacio PALACIOS-HUERTA / Paris : EDITIONS ECONOMICA (2015)PermalinkLes techniques et les procédures d'audit comptable et financier / Khalil FEGHALI / Paris : L'HARMATTAN (2015)PermalinkElementary statistics / Allan G. BLUMAN / MCGRAW-HILL HIGHER EDUCATION (2014)PermalinkDiscovering statistics using IBM SPSS statistics / Andy FIELD / SAGE PUBLICATIONS LTD (2013)PermalinkFinance / Nathan BOIGIENMAN / Paris : VUIBERT (2013)PermalinkLe défi des pays émergents / Christian DESEGLISE / MICHEL DE MAULE (2012)PermalinkLa gestion des opérations / William J. STEVENSON / Montréal : EDITIONS DE LA CHENELIERE (LES) (2012)Permalink
LIBRARY - Campus Rouen
NEOMA Business School
pmb
-
59 Rue Taittinger, 51100 Reims
-
00 33 (0)3 26 77 46 15
Library Campus Reims
-
1 Rue du Maréchal Juin, BP 215
76825 Mont Saint Aignan cedex -
00 33 (0)2 32 82 58 26